Local Illumination Normalization and Facial Feature Point Selection for Robust Face Recognition

Authors

  • Song HAN KIM IL SUNG University, Pyongyang
  • Jinsong KIM
  • Cholhun KIM
  • Jongchol JO

Keywords:

Face recognition, Illumination normalization, Robustness, Gabor wavelet, Feature point, ICA, HMM, AAM

Abstract

Face recognition systems must be robust to the variation of various factors such as facial expression, illumination, head pose and aging. Especially, the robustness against illumination variation is one of the most important problems to be solved for the practical use of face recognition systems. Gabor wavelet is widely used in face detection and recognition because it gives the possibility to simulate the function of human visual system. In this paper, we propose a method for extracting Gabor wavelet features which is stable under the variation of local illumination and show experiment results demonstrating its effectiveness.

References

Aguerrebere, C., Capdehourat, G., Delbracio, M., Mateu, M., Fernandez, A.; Lecumberry, F. : An Improved Face Recog- nition Algorithm through Gabor Filter Adaptation, Automatic Identification Advanced Technologies, 2007 IEEE Workshop on 7-8 June, 2007, 74-79

Ahonen, T.; Hadid, A.; Ainen M. P. ; Face Recognition with Local Binary Patterns, ECCV 2004, LNCS 3021, 2004, 469–481.

Bow, S.T.; Pattern Recognition and Image Preprocessing (Ed. K. J. Ray Liu, Signal Processing and Communications), Marcel Dekker, Inc, 2002.

Chen, W.; M. Joo Er and S. Wu; Illumination Compensation and Normaliza- tion for Robust Face Recognition Using Discrete Cosine Transform in Logarithm Domain, IEEE Transactions On Systems, Man, and Cybernetics - Part B: Cybernetics, Vol. 36, No. 2, April 2006, 458-466.

Delac,K.; Grgic, M.; Grgic, S.; Generalization Abilities of Appearance- Based Subspace Face Recognition Algorithms, Technical Report, FER-VCL-TR- 2005-01, University of Zagreb, FER, 2005,

http://www.mendeley.com/research/generalization-abilities-appearance-based-subspace-face-recognition-algorithms/

Delac, K.; Grgic, M. ; Grgic, S.; Statistics in Face Recognition : Analyzing Probability Distributions of PCA, ICA and LDA Performance Results, Technical Report, FER-VCL-TR-2005-03, University of Zagreb, FER, 2005, Image and Signal Processing and Analysis, 2005. Proceedings of the 4th International Symposium on 15-17 Sep. 2005, 289 - 294

Edwards, G. J. ; Cootes, T. F. ; Taylor, C. J.; Active appearance models, IEEE Trans.on PAMI, Vol.23, no.6, 2001, 681-685.

Edwards, G.; Cootes, T. F. ; Taylor, C. J. ; Face recognition using active appearance models, in Proc. European Conference on Computer Vision, Vol.2, 1998, 581-695.

Fukunaga, K., Introduction to Statistical Pattern Recognition, Academic Press, 1990.

Kotropoulos, C.; Tefas, A. ; I. Pitas; Mor- phological Elastic Graph Matching applied to frontal face authentication under well-controlled and real conditions, Pattern Recognition, Vol.13, no.12, 2000, 1935-1947.

Lu, X.; Image Analysis for Face Recognition, Department of Computer Science & Engineering, Michigan State university, East Lansing, MI, 48824, http://www.scribd.com/doc/39310482/Image-Analysis-for-Face-Recognition

Marcel, S.; Rodriguez, Y., Heusch G.; On the Recent Use of Local Binary Patterns for Face Authentication, IDIAP-RR 06-34, to appear in International Journal on Image and Video Processing Special Issue on Facial Image Processing, 2007

Martinez, A. M. ; Kak, A. C.; PCA versus LDA, IEEE Trans.on PAMI, Vol.23, no.2, 2001, 228-233.

Maturana, D. ; Mery, D. ; Soto, A. ; Face Recognition with Local Binary Patterns, Spatial Pyramid Histograms and Naive Bayes Nearest Neighbor classification, 2009 International Conference of the Chilean Computer Science Society, 2009, 125-132.

Ojala, T.; Pietikäinen, M. ; Mäenpää, T., Multiresolution Gray-scale and Rotation Invariant Texture Classification with Local Binary Patterns, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, no.7, 2002, 971-987.

Pang, Y. ; Zhang, L. ; Li, M. ; Liu Z. ; W. Ma; A Novel Gabor-LDA Based Face Recognition Method, PCM 1, Vol. 3331, Springer, 2004, 352-358.

Phillips, P., Moon, H., Rizvi, S., Rauss, P., The FERET Evaluation Methodology for Face-Recognition Algorithms, IEEE Trans. on PAMI, Vol.22, no.10, 2000, 1090-1104.

Shakhnarovich, G. ; Moghaddam, B.; Face Recognition in Subspace, Springer- Verlag, 2004.

Sharif, M., Khalid, A., Raza, M., S. MOHSIN; Face Recognition using Gabor Filters, Journal of Applied Computer Science & Mathematics, no. 11 (5) /2011, Suceava, 53-57

Su, Y.; Shan, S.; X. Chen; W. Gao; Hierarchical Ensemble of Global and Local Classifiers for Face Recognition, IEEE Transactions on Image Processing, vol 18 Issue 8, 2009, 1885-1896.

Theodoridis, S.; Koutroumbas, K. ; Pattern Recognition, Fourth Edition, Academic press, 2009

Turk, M.; Pentland A. ; Eigenfaces for Recognition, Journal of Cognitive Neuroscience, Vol.3, no.1, 1991, 72-86.

Webb, Andrew R. ; Statistical Pattern Recognition, Wiley-Blackwell (an imprint of John Wiley & Sons Ltd), 2011

Wiskott, L.; Fellous, J.; Malsburg, C. V.; Face Recognition by Elastic Bunch Graph Matching, IEEE Trans.on PAMI, Vol.19, no.7, pp.775-779, 1997.

Zhao, W.; Chellappa, R.; Phillips, P. J.; Rosenfeld, A.; Face Recognition: A Literature Survey, ACM Computing Surveys, Vol. 35, No. 4, December 2003, 399–458.

Downloads

Published

2013-03-30

How to Cite

HAN, S., KIM, J., KIM, C., & JO, J. (2013). Local Illumination Normalization and Facial Feature Point Selection for Robust Face Recognition. Journal of Mobile, Embedded and Distributed Systems, 5(1), 6-10. Retrieved from http://jmeds.eu/index.php/jmeds/article/view/Facial_Feature_Point_Selection_for_Robust_Face_Recognition